
openDAQ Documentation
Release 0.3.3

Ingen10

Jan 12, 2018

Contents

1 openDAQ usage in Python 3
1.1 Device connection and port handling . 3
1.2 ADC reading (Command-Response mode) . 4
1.3 DAC setting (CR mode) . 4
1.4 Stream Experiments Creation (Stream Mode) . 5
1.5 Capture Input . 8
1.6 Counter Input . 9
1.7 Encoder Input . 9
1.8 PWM Output . 9
1.9 PIO Configuration and control (CR mode) . 10
1.10 Bit-bang SPI Output . 10
1.11 Other functions . 11
1.12 Calibration . 12

2 API documentation 15
2.1 opendaq.daq module . 15

3 Indices and tables 25

Python Module Index 27

i

ii

openDAQ Documentation, Release 0.3.3

This is the documentation of the openDAQ Python package

Contents:

Contents 1

openDAQ Documentation, Release 0.3.3

2 Contents

CHAPTER 1

openDAQ usage in Python

1.1 Device connection and port handling

To establish a connection with the openDAQ through the command line type the following:

python

from opendaq import DAQ

daq = DAQ("/dev/ttyUSB0")

When creating an object of type DAQ, you have to specify the actual port at wich the openDAQ is connected. This
can be done, in UNIX operating systems, typing in the terminal:

$ dmesg

You should see something like this:

...

...

...
for cp210x
[17755.465949] cp210x 1-4.4:1.0: cp210x converter detected
[17755.536101] usb 1-4.4: reset full-speed USB device number 5 using ehci-pci
[17755.629330] usb 1-4.4: cp210x converter now attached to ttyUSB0

In this example, openDAQ is attached to the USB port named ttyUSB0.

If you are working in Windows, the name of the port will be something like COMxx instead of /dev/ttyUSBxx. You
can check the port in Control Panel->System->Device Manager.

Now, with the object daq created, we can start working with it. If you want to close the port, simply type the following:

daq.close()

3

openDAQ Documentation, Release 0.3.3

1.2 ADC reading (Command-Response mode)

First of all, we must configure the ADC,specifying the positive analog input, and the negative analog input if we want
to do differential measures.

This can be done using the conf_adc function:

a.conf_adc(pinput,ninput,gain,nsamples)

The values of these parameters are listed in the following table:

Pa-
rame-
ter

Description Value Notes

pinput Positive input 1:8 AN1-AN8
ninput Negative input M:0,5,6,7,8,25

S: 0, 1:8
N: 0, 1:8

0: ref ground
25: ref 2,5 V
rest: input pins

gain Analog gain M: 0:4
S: 0:7
N: 0:7

x1/3,x1,x2,x10,x100
x1,x2,x4,x5,x8,x10,x16, x20
x1,x2,x4,x5,x8,x10,x16, x32

nsam-
ples

Number of samples
per data point

[0-254]

There are three options to read the ADC.

If we want the raw data from the ADC, we can use

data = daq.read_adc()

print data

Much better, if we want the data directly in Volts, just use:

data_Volts = daq.read_analog()

Finally, we can also read all the analog inputs simultaneously using the function read_all:

data_Volts = daq.read_all()

This function return a list with the readings (in Volts) of all analog inputs.

1.3 DAC setting (CR mode)

As in the case of reading the ADC, there are two functions to set the output of the DAC: set_analog(‘V’) and
set_dac(‘raw’). The first set DAC output voltage in V betwen the voltage hardware limits :

daq.set_analog(1.5)

The function set_dac set the DAC with the raw binary data value:

daq.set_dac(3200)

4 Chapter 1. openDAQ usage in Python

openDAQ Documentation, Release 0.3.3

Model Output Voltage Range
openDAQ[M] [-4.096V 4.096V]
openDAQ[S] [0V 4.096V]
openDAQ[N] [-4.096V 4.096V]

1.4 Stream Experiments Creation (Stream Mode)

OpenDAQ has two main modes of operation: Command-Response Mode and Stream (hardware-timed) Mode.

In command-response mode all communications are initiated by a command from the host PC, wich is followed by a
response from openDAQ.

On the other hand, the Stream mode is a continous hardware-timed input mode where a list of channels that are scanned
at a specified rate.

Stream Mode can be used in three kind of experiment modes, wich differ in the maximum scan rate allowed and
the source of the timing clock (internal or external). We define an experiment as a certain data source with specific
configuration, sampling rate and start and stop conditions:

• Stream experiments

• External experiments

• Burst experiments

Once the experiment is configured we can start it:

daq.start()

or stop it:

daq.stop()

We can read the data using the method read:

stream_exp.read()

1.4.1 Stream experiments

For Stream Experiments, a specific data source is sampled in regular intervals, using internal timer to keep time count
(Timer2). Fastest scan rate in this mode is 1kSPS (1ms of period).

User can configure up to 4 Stream experiments to be running simultaneously. They will have each an internal buffer
of about 400 samples, which will be normally enough not to lose any point in the communications.

First of all we have to import the library and the constant definitions:

from opendaq import *
from opendaq.daq import *

To create an Stream Experiment use the following function:

daq.stream_exp = daq.create_stream(ExpMode.ANALOG_IN, 100, 30,
→˓continuous=False)

1.4. Stream Experiments Creation (Stream Mode) 5

openDAQ Documentation, Release 0.3.3

with parameters:

Pa-
rame-
ter

Description Value Notes

Exp-
Mode

Define data source or
destination

0:5 0:ANALOG_IN
1:ANALOG_OUT
2:DIGITAL_IN
3:DIGITAL_OUT
4:COUNTER_IN
5:CAPTURE_IN

period Period of the stream ex-
periment

1:65536

npoints Total number of points
for the experiment

0:65536 0 indicates continous adquisition (By default 10)

con-
tinu-
ous

Indicates if experiment is
continuous

True or
False

False:run once (By default False)

Once created the experiment we can configure the input to read. For example, if we want to read the analog input 6
(AN6), without gain, we should use:

stream_exp = daq.create_stream(ExpMode.ANALOG_IN, 200, continuous=True)

Now, we have to configure the channel. To do this we use the method analog_setup of the class DAQStream:

stream_exp.analog_setup(pinput=8, ninput=0, gain=Gains.M.x1)

with parameters:

For the example above:

stream_exp.analog_setup(pinput=7,gain=GAIN_S_X2)

1.4.2 External experiments

External experiments use an external digital trigger source to perform readings. Fastest scan rates are in similar ranges
as for the Stream experiments. The rest of properties and parameters are similar to Stream experiments.

User can define up to 4 external experiments at the same time, each of one connected to digital inputs D1 to D4 (the
number of the internal DataChannel is connected to the digital input number) to act as trigger inputs.

Maximum number of experiments will be 4 in total, including all External and Stream experiments.

To create an External Experiment use the following function:

daq.create_external(mode,clock_input,edge,npoints,continuous,buffersize)

The new parameters here are clock_input and edge, which are explained in the following table:

Parameter Description Value Notes
clock_input Assign a DataChannel number and a digital input for this experiment 1:4
edge New data on rising (1) or falling (0) edges 0:1

For example, we are going to create an external experiment with an analog readin in AN8 (SE):

6 Chapter 1. openDAQ usage in Python

openDAQ Documentation, Release 0.3.3

extern_exp = daq.create_external(ExpMode.ANALOG_IN, 1, edge=1, npoints=10,
→˓continuous=False)

As with the stream experiment, now we have to setup the analog input:

stream_exp.analog_setup(pinput=8, ninput=0, gain=Gains.M.x1)

daq.start()

We can use a while loop in this way:

while daq.is_measuring:
print "data", extern_exp.read()

1.4.3 Burst experiments

Burst experiments are also internally timed, like Stream experiments, but they are intended to use a faster sampling
rate, up to 10kSPS. The high acquisition rate limits the amount of things that the processor is capable of doing at the
same time. Thus, when a Burst experiment is carried out, no more experiments can run at the same time.

Burst experiment use a bigger internal buffer of about 1600 points to temporary store results. However, if the exper-
iment goes on for a long time, the buffer will eventually get full and the firmware will enter “Auto-recovery” mode.
This means that it will get no more points until buffer gets empty again, having an time where no sample will be taken.

To create a burst experiment use the following function:

burst_exp = daq.create_burst(mode, period, npoints, continuous)

Here is an example of a how a burst experiment is configured to do a analog output streaming:

preload_buffer = [0.3, 1, 3.3, 2]
burst_source = daq.create_burst(ExpMode.ANALOG_IN, period=200,
→˓npoints=len(preload_buffer), continous=False)
burst_source.analog_setup()
burst_source.load_signal(preload_buffer)

daq.start()

1.4.4 Analog output streaming

With Stream and Burst experiments we can load a generic waveform (of any type) and the device will reproduce it
through the DAC. This can be achieved by this way:

• First create the waveform:

preload_buffer = [0.3, 1, 3.3, 2] # The waveform

• Next, create the experiment (Stream or Burst, see next subsections)

• Finally load the signal to the experiment:

exp_name.load_signal(preload_buffer)

IMPORTANT NOTE: Analog output streams always use internal DataChannel #4, thus digital input D4 will not be
available for an External experiment.

1.4. Stream Experiments Creation (Stream Mode) 7

openDAQ Documentation, Release 0.3.3

1.4.5 Triggering experiments

From version 0.2.1 of the library, openDAQ allows setting trigger modes to start executing experiments. Trigger
sources may be software triggered (default), digital input trigger (rising or falling edge) or analog value (input value
above or below a specific limit).

stream1.trigger_setup(type,value)

where

type Value Notes
SW_TRG • software trigger (default)

DIN1_TRG 0/1 digital trigger
DIN2_TRG 0/1 digital trigger
DIN3_TRG 0/1 digital trigger
DIN4_TRG 0/1 digital trigger
DIN5_TRG 0/1 digital trigger
DIN6_TRG 0/1 digital trigger
ABIG_TRG any analog trigger
ASML_TRG any analog trigger

1.5 Capture Input

The capture input permits measuring the time length of incoming digital signals. It makes use of device internal timer
to calculate the time elapsed between changes in state (high to low or low to high) of an external signal. OpenDAQ
has a main clock running at 16MHz, which limits the minimum periods that the device is able to measure to several
microseconds.

The input in this mode is D5 (DIO 5 pin)

There are three methods associated with this mode: init_capture, stop_capture and get_capture. To start measuring
use

daq.init_capture(period)

where period is the estimated period of the wave (in microseconds), and its range is 32 bits. Now , we can get the
Capture reading:

daq.get_capture(mode)

where

Parameter Value Notes
mode 0:3 0: Low cycle

1: High cycle
2: Full period

Finally, stop the capture when the experiment has finished:

daq.stop_capture(mode)

8 Chapter 1. openDAQ usage in Python

openDAQ Documentation, Release 0.3.3

1.6 Counter Input

The counter input is also based on Timer 1, and its functionality consists on counting number of edges coming through
the port (D6). This can be useful to measure the frequency of very fast signal or to read some kind of sensors.

User can select which kind of digital edges will the peripheral detect (high or low), and he can also read and reset the
counter back to 0 whenever it is necessary.

The edges are counted in a 32-bit counter.

To start counting type the following:

daq.init_counter(edge)

This method configure which edge increments the count: Low-to-High (1) or High-to-Low (0). To get the counter
value:

daq.get_counter(reset)

If reset>0 , the counter is reset after perform the reading.

1.7 Encoder Input

The encoder input is based on external interrupts on pin D6. Its functionality consists on counting number of edges
coming through the digital input D6 while keeping track of the direction of the movement, by reading D5 on each
interrupt.

User can select the maximum resolution of the encoder.

To work in this mode there are three methods. The first start the encoder function:

daq.init_encoder(resolution)

Resolution is the maximum number of ticks per round (32-bit counter).This command configures external interrupts
on D6 and resets the pulse counter to 0. Next, to get the current encoder relative position use:

daq.get_encoder()

This method returns the actual encoder value. Finally, stop the encoder:

daq.stop_encoder()

1.8 PWM Output

Pulse Width Modulator generates a continuous digital signal at a given frequency. Duty refers to the portion of time
that the signal spends in High state.

PWM output is connected to port D6 of openDAQ.

To start the PWM Output mode use the following method:

daq.init_pwm(duty,period)

Duty is the high time of the signal ([0:1023]). If 0, the signal is always low. Period is the period of the signal in
microseconds. To stop the PWM:

1.6. Counter Input 9

openDAQ Documentation, Release 0.3.3

daq.stop_pwm()

1.9 PIO Configuration and control (CR mode)

The openDAQ has 6 DIO (digital Inputs/Outputs). We have 4 DIO lines on the right side screw terminal block (D1-
D4), and the two others on the left terminal block (D5-D6).

D5 is a multipurpose terminal that is also connected with internal microprocessor’s Timer/Counter 2. Apart from being
used as a DIO, this terminal can be configured as PWM output, Counter input or Capture input.

All the digital I/O lines include an internal series resistor and a protective diode that provides overvoltage/short-circuit
protection. The series resistors (about 100Ω) also limit the ability of these lines to sink or source current.

The DIOs have 3 possible states: input, output-high, or output-low. Each line of I/O can be configured individually.
When configured as an input, the line has a 50kΩ pull-up resistor to 5.0 volts. When configured as output-high, the
line is connected to the internal 5.0 volt supply (through a series resistor).

When configured as output-low, a bit is connected to GND (through a series resistor). All digital I/O are configured to
be inputs at power up.

We have two couples of commands to control the digital I/O lines. The first two ones control each line individually,
one to set or read the line direction (input or output), and the other to read or set the line value (high or low). The other
two commands control the six lines at a time, one function to read or set the lines direction, and the other command to
read or set the lines values.

Method Arguments Notes
set_pio_dir number: 1:6

output: 0:1
PIO number
0: input; 1: output

set_pio number: 1:6
value: 0:1

PIO number
Digital value: 0 Low, 1 High

read_pio number: 1:6 PIO number
set_port_dir output: 0:1 0: input; 1: output
set_port value: 0:1 Digital value: 0 Low, 1 High
read_port

1.10 Bit-bang SPI Output

The Serial Peripheral Interface (SPI) is a very popular communications bus, used widely in electronics to control slave
devices. This utility allows openDAQ to communicate with other low level devices, like external port expanders,
PGAs, switches or other peripherals.

SPI is a synchronous serial data link that operates in full duplex mode, using a master/slave scheme, where the master
device always initiates the data frame. Multiple slave devices are allowed with separated select lines.

The SPI bus specifies four logic signals:

• SCLK: serial clock (output from master)

• MOSI: master output, slave input (output from master)

• MISO: master input, slave output (output from slave)

• SS: slave select (active low, output from master)

10 Chapter 1. openDAQ usage in Python

openDAQ Documentation, Release 0.3.3

To begin a communication, the bus master first configures the clock, and then transmits the logic 0 for the desired chip
over the chip select line (SS). During each SPI clock cycle, a full duplex data transmission occurs:

• The master sends a bit on the MOSI line, and the slave reads it from that same line

• The slave sends a bit on the MISO line, and the master reads it from that same line

Transmissions may involve any number of clock cycles.

A relevant issue concerning SPI transmissions, is how the SCLK behaves, and when the MISO and MOSI lines should
be read. By convention, these options are named CPOL (clock polarity) and CPHA (clock phase). At CPOL=0 the base
value of the clock, when inactive, is zero. CPHA=0 means sample on the leading (first) clock edge, while CPHA=1
means sample on the trailing (second) clock edge, regardless of whether that clock edge is rising or falling. Taking
this into consideration, we can define up to four SPI modes, by combining the two possible values of each option.

OpenDAQ uses a so called bit-bang SPI mode, as the bus signals are generated entirely by software (no specific
hardware is used).

Specific commands are available to configure the functions of the pins (which DIO number will be used for each SPI
line) and the SPI mode (CPOL and CPHA). The SS lines must be controlled separately, using any of the DIO terminals
not configured as SPI line (PIO command must be used).

To configure Bit-bang SPI use this method:

daq.spi_config(cpol,cpha)

Here, cpol is the clock polarity (clock pin state when inactive) and chpa is the clock phase (leading 0, or trailing 1
edges read).

To select the PIO numbers to use, we have the following method:

daq.spi_setup(nbytes,sck,mosi,miso)

where

Parameter Value Notes
nbytes Number of bytes
sck 1 by default Clock pin
mosi 2 by default MOSI pin
miso 3 by default MISO pin

Finally, to transfer (send and receive) a byte or a word use:

daq.spi_write(value,word)

If word = True , then we are sending a 2-byte word instead of a byte.

1.11 Other functions

There are other methods that can be used with the openDAQ. They are listed below:

1.11. Other functions 11

openDAQ Documentation, Release 0.3.3

Method Arguments Notes
enable_crc on Enable/Disable the cyclic redun-

dancy check
set_led color 0:off ; 1: green ; 2: red ; 3: orange
set_id id: [000:999] Identify openDAQ device
device_info None Read device configuration:

Hardware version
Firmware version
Device ID number

1.12 Calibration

IMPORTANT NOTE: The functions used for openDAQ calibration have been redesigned completely from firmware
version 1.4.0 and python library version 0.3

Use the tool opendaq-utils, which is installed with the rest of the scripts, for device calibrating and updating.

1.12.1 Theory of operation

AIN and DAC commands are transmitted between the host PC and the device in raw binary using the full 16-bit range
of the binary transmissions. For example, raw code -32768 correspond in the ADC readings of the openDAQ [M] to
-4.096V, while it is equivalent to -12.0V for the openDAQ [S]. Maximum ADC raw values range up to 32767, which
is equivalent to 4.095V in openDAQ [M] and to 12.0V in openDAQ[S].

The same happens for the DAC values: in all openDAQ models maximum raw value (32767) is equivalent to a +4.096V
output, and in case of openDAQ [M] minimum value is -32768 or -4.095V. Minimum DAC value for openDAQ [S] is
0V which is equivalent to 0 raw code.

In the case of the ADC inputs the situation is more complex, as there are different gain settings that do affect the
conversion between raw codes and real voltage values.

The devices always use the raw values for the internal calculations and data transmission, and it is the daq.py library
who has the duty to translate those binary codes into actual voltage values.

The relationships between the voltage values and raw codes are always linear, and a good approximation to transform
the raw codes into voltages would be just to use the theorical formulas that could be deduced from previous paragraphs.
Anyhow, the voltage values calculated from the theorical formulas would have some error, because the components
inside the circuits of the openDAQ devices do not have a perfect ideal behaviour. Thus, a specific calibration is used
for each openDAQ device, so that the values read by the ADCs and set in the DAC are far more similar to the ideal
values.

These values are stored in the permanent EEPROM memory of the openDAQs and used by the opendaq-python library
to calculate the formulas between the raw codes and voltage values. Those calculations are carried in a slighly different
manner depending on the openDAQ model. The code of the conversions is in the model.py file.

1.12.2 DAC calibration

The functions that manage the DAC calibration are:

12 Chapter 1. openDAQ usage in Python

openDAQ Documentation, Release 0.3.3

daq.set_dac_calib(*list of CalibReg registers*)
daq.get_dac_calib()

These methods set and read the device DAC calibration, where CalibReg are pairs of slope and offset coefficients
([dac_corr, dac_offset]). The values are the coefficients of the line that corrects the deviation between the ideal values
and the actual values that the device outputs when it applies no calibration.

In the case of the of the DAC output the mathematical function between the theorical value and the raw binary code is
exactly the same:

𝑟𝑎𝑤𝑑𝑎𝑐𝑐𝑜𝑑𝑒 = 𝑣𝑜𝑙𝑡𝑠/𝑑𝑎𝑐𝑏𝑎𝑠𝑒𝑔𝑎𝑖𝑛

And applying the calibration:

𝑟𝑎𝑤𝑑𝑎𝑐𝑐𝑜𝑑𝑒 = (𝑣𝑜𝑙𝑡𝑠− 𝑑𝑎𝑐𝑜𝑓𝑓𝑠𝑒𝑡)/(𝑑𝑎𝑐𝑏𝑎𝑠𝑒𝑔𝑎𝑖𝑛 * 𝑑𝑎𝑐𝑐𝑜𝑟𝑟)

1.12.3 ADC calibration

The functions that manage the DAC calibration are:

daq.get_adc_calib(*list of CalibReg registers*)
daq.get_adc_calib()

Where as in the case of the DAC calibration, CalibReg are pairs of slope and offset coefficients ([adc_corr,
adc_offset]).

• adc_corr is the slope of the calibration lines, the read value divided by the real voltage value at the input.

• adc_offset is the zero crossing of the line, in this case the raw ADC value for a 0V input (in this case, it is not a
voltage but a raw binary code).

In the case of the ADC, several facts have to be taken into consideration:

• Each analog input will have a different calibration line

• In the case of openDAQ [M] each gain setting must be calibrated separately, as the gains are set by resistor
values with a relatively high tolerance. This is not the case of the

openDAQ [S] and [N], which use a PGA with factory calibration for all ranges. - The inputs of the openDAQ [S]
have a different calibration if they are used as single ended (SE) or differential (DE). In the case of openDAQ [M] the
calibration can be the same for both modes, because the inputs are just multiplexed.

All of this translates into the following:

• openDAQ [M] has a total of 13 ADC calibration slots, 8 for each analog input, and 5 for each gain setting.

• openDAQ [S] has 16 ADC calibration slots, 8 for each analog input in SE mode, and 8 for each input in DE
mode.

• openDAQ [N] has 16 ADC calibration slots, 8 for each analog input in SE mode, and 8 for each input in DE
mode.

The mathematical function between the raw code given by the device and the real analog value is given by an equation
depending on the device model (check file model.py):

𝑣𝑜𝑙𝑡𝑠 = 𝑟𝑎𝑤/(𝑎𝑑𝑐𝑏𝑎𝑠𝑒𝑔𝑎𝑖𝑛 * 𝑔𝑎𝑖𝑛𝑎𝑚𝑝𝑙𝑖)

Where adc_base_gain is the relationship between binary codes and volts at gain 1x, and gain_ampli the actual gain
amplification being used.

1.12. Calibration 13

openDAQ Documentation, Release 0.3.3

Applying calibration to the equation above:

𝑣𝑜𝑙𝑡𝑠 = (𝑟𝑎𝑤 − 𝑎𝑑𝑐𝑜𝑓𝑓𝑠𝑒𝑡1 − (𝑎𝑑𝑐𝑜𝑓𝑓𝑠𝑒𝑡2 * 𝑔𝑎𝑖𝑛𝑎𝑚𝑝𝑙𝑖))/(𝑎𝑑𝑐𝑐𝑜𝑟𝑟1 * 𝑎𝑑𝑐𝑐𝑜𝑟𝑟2 * 𝑎𝑑𝑐𝑏𝑎𝑠𝑒𝑔𝑎𝑖𝑛 * 𝑔𝑎𝑖𝑛𝑎𝑚𝑝𝑙𝑖)

14 Chapter 1. openDAQ usage in Python

CHAPTER 2

API documentation

2.1 opendaq.daq module

Main functions used to communicate with the device. See usage.rst for additional info.

class opendaq.daq.CMD
Bases: enum.IntEnum

AIN = 1

AIN_ALL = 4

AIN_CFG = 2

BURST_CREATE = 21

CAPTURE_INIT = 14

CAPTURE_STOP = 15

CHANNEL_CFG = 22

CHANNEL_DESTROY = 57

CHANNEL_FLUSH = 45

CHANNEL_SETUP = 32

COUNTER_INIT = 41

EEPROM_READ = 31

EEPROM_WRITE = 30

ENABLE_CRC = 55

ENCODER_INIT = 50

ENCODER_STOP = 51

EXTERNAL_CREATE = 20

15

openDAQ Documentation, Release 0.3.3

GET_CALIB = 36

GET_CAPTURE = 16

GET_COUNTER = 42

GET_ENCODER = 52

GET_STATE_CHANNEL = 35

GET_TRIGGER_MODE = 34

ID_CONFIG = 39

LED_W = 18

PIO = 3

PIO_DIR = 5

PORT = 7

PORT_DIR = 9

PWM_DUTY = 12

PWM_INIT = 10

PWM_STOP = 11

RESET = 27

RESET_CALIB = 38

SET_ANALOG = 24

SET_CALIB = 37

SET_DAC = 13

SIGNAL_LOAD = 23

SPISW_CONFIG = 26

SPISW_SETUP = 28

SPISW_TRANSFER = 29

STREAM_CREATE = 19

STREAM_DATA = 25

STREAM_START = 64

STREAM_STOP = 80

TRIGGER_SETUP = 33

WAIT_MS = 17

class opendaq.daq.DAQ(port, debug=False)
Bases: object

This class represents an OpenDAQ device.

clear_experiments()
Delete the whole experiment list.

close()
Close the serial port.

16 Chapter 2. API documentation

openDAQ Documentation, Release 0.3.3

conf_adc(pinput=8, ninput=0, gain=0, nsamples=20)
Configure the analog-to-digital converter.

Get the parameters for configure the analog-to-digital converter.

Parameters

• pinput – Positive input [1:8].

• ninput – Negative input.

• gain – Analog gain.

• nsamples – Number of samples per data point [0-255).

Raises ValueError

create_burst(*args, **kwargs)
Create Burst experiment.

See the DAQBurst class constructor for more info.

create_external(mode, clock_input, *args, **kwargs)
Create External experiment.

See the DAQExternal class constructor for more info.

create_stream(mode, *args, **kwargs)
Create Stream experiment.

See the DAQStream class constructor for more info.

enable_crc(on)
Enable/Disable the cyclic redundancy check.

Parameters on – Enable/disable CRC checking (bool).

flush()
Flush internal buffers.

flush_channel(number)
Flush the channel.

Parameters number – Number of DataChannel to flush.

Returns ValueError

get_adc_calib()
Get the ADC calibration.

Returns List of ADC calibration registers

get_capture(mode)
Get Capture reading for the period length.

Parameters mode – Period length (0: Low cycle, 1: High cycle, 2: Full period)

Returns

• mode

• period: The period length in microseconds

Raises ValueError

get_counter(reset)
Get the counter value.

2.1. opendaq.daq module 17

openDAQ Documentation, Release 0.3.3

Parameters reset – reset the counter after perform reading (boolean).

get_dac_calib()
Get the DAC calibration.

Returns List of DAC calibration registers

get_encoder()
Get current encoder relative position.

Returns Position: The actual encoder value.

get_info()
Read device information.

Returns [hardware_version, firmware_version, device_id]

get_state_ch(number)
Get state of the DataChannel.

Parameters number – Number of the DataChannel.

Raises ValueError

init_capture(period)
Start Capture Mode around a given period.

Parameters period – Estimated period of the wave (in microseconds).

Raises ValueError

init_counter(edge)
Initialize the edge counter and configure which edge increments the count.

Parameters edge – high-to-low (False) or low-to-high (True).

init_encoder(resolution)
Start Encoder function.

Parameters resolution – Maximum number of ticks per round [0:65535].

Raises ValueError

init_pwm(duty, period)
Start PWM output with a given period and duty cycle.

Parameters

• duty – High time of the signal [0:1023](0 always low, 1023 always high).

• period – Period of the signal (microseconds) [0:65535].

Raises ValueError

is_measuring
True if any experiment is going on.

open()
Open the serial port.

read_adc()
Read data from ADC and return the raw value.

Returns Raw ADC value.

read_all(nsamples=20, gain=0)
Read data from all analog inputs

18 Chapter 2. API documentation

openDAQ Documentation, Release 0.3.3

Parameters

• nsamples – Number of samples per data point [0-255] (default=20)

• gain – Analog gain (default=1)

Returns Values[0:7]: List of the analog reading on each input

read_analog()
Read data from ADC in volts.

Returns Voltage value.

read_eeprom(pos)
Read a byte from the EEPROM.

Parameters

• val – value to write.

• pos – position in memory.

Raises ValueError

read_pio(number)
Read PIO input value (0: low, 1: high).

Parameters number – PIO number.

Returns Read value.

Raises ValueError

read_port()
Read all PIO values.

Returns Binary value of the port.

remove_experiment(experiment)
Delete a single experiment.

Parameters experiment – reference of the experiment to remove.

Raises ValueError

send_command(command, ret_fmt=None)
Build a command packet, send it to the openDAQ and process the response.

Parameters

• command – Command string.

• ret_fmt – Payload format of the response using python ‘struct’ format characters. I
ret_fmt is None, no response is expected.

Returns Command ID and arguments of the response.

Raises LengthError: The legth of the response is not the expected.

serial_str

set_adc_calib(regs)
Set the ADC calibration.

Parameters regs – A list of CalibReg objects.

Raises ValueError, IndexError

2.1. opendaq.daq module 19

openDAQ Documentation, Release 0.3.3

set_analog(volts, number=1)
Set DAC output (volts). Set the output voltage of the DAC. :param volts: DAC output value in volts.
:raises: ValueError

set_dac(raw, number=1)
Set DAC output (raw value). Set the raw value of the DAC.

“param raw: Raw ADC value. :raises: ValueError

set_dac_calib(regs)
Set the DAC calibration.

Parameters regs – A list of CalibReg objects.

Raises ValueError, IndexError

set_id(id)
Identify openDAQ device.

Parameters id – id number of the device [000:999]

Raises ValueError

set_led(color, number=1)
Choose LED status. LED switch on (green, red or orange) or switch off.

Parameters color – LED color (use LedColor).

Raises ValueError

set_pio(number, value)
Write PIO output value. Set the value of the PIO terminal (0: low, 1: high).

Parameters

• number – PIO number.

• value – digital value (0: low, 1: high)

Raises ValueError

set_pio_dir(number, output)
Configure PIO direction. Set the direction of a specific PIO terminal (D1-D6).

Parameters

• number – PIO number.

• output – PIO direction (0 input, 1 output).

Raises ValueError

set_port(value)
Write all PIO values. Set the value of all Dx terminals.

Parameters value – Port output byte (bits: 0:low, 1:high).

Raises ValueError

set_port_dir(output)
Configure all PIOs directions. Set the direction of all D1-D6 terminals.

Parameters output – Port directions byte (bits: 0:input, 1:output).

Raises ValueError

spi_config(cpol, cpha)
Bit-Bang SPI configure (clock properties).

20 Chapter 2. API documentation

openDAQ Documentation, Release 0.3.3

Parameters

• cpol – Clock polarity (clock pin state when inactive).

• cpha – Clock phase (leading 0, or trailing 1 edges read).

Raises ValueError

spi_setup(nbytes, sck=1, mosi=2, miso=3)
Bit-Bang SPI setup (PIO numbers to use).

Parameters

• nbytes – Number of bytes.

• sck – Clock pin.

• mosi – MOSI pin (master out / slave in).

• miso – MISO pin (master in / slave out).

Raises ValueError

spi_write(value, word=False)
Bit-bang SPI transfer (send+receive) a byte or a word.

Parameters

• value – Data to send (byte/word to transmit).

• word – send a 2-byte word, instead of a byte.

Raises ValueError

start()
Start all available experiments.

stop(clear=False)
Stop all running experiments and exit threads.

Parameters clear – If True, the experiment list will be cleared. The

experiments will no longer be available.

stop_capture()
Stop Capture mode.

stop_encoder()
Stop encoder

stop_pwm()
Stop PWM

trigger_mode(number)
Get the trigger mode of the DataChannel.

Parameters number – Number of the DataChannel.

Raises ValueError

write_eeprom(pos, val)
Write a byte in the EEPROM.

Parameters id – id number of the device [000:999].

Raises ValueError

2.1. opendaq.daq module 21

openDAQ Documentation, Release 0.3.3

class opendaq.daq.LedColor
Bases: enum.IntEnum

Valid LED colors.

GREEN = 1

OFF = 0

ORANGE = 3

RED = 2

2.1.1 Experiment classes

class opendaq.experiment.DAQBurst(mode, period, npoints=10, continuous=False, buffer-
size=4000)

Bases: opendaq.experiment.DAQExperiment

Burst experiment.

Parameters

• mode – Define data source or destination (use ExpMode).

• period – Period of the stream experiment (microseconds) [1:65536]

• npoints – Total number of points for the experiment [0:65536]

• continuous – Indicates if the experiment is continuous (False: run once, True: continu-
ous).

• buffersize – Buffer size

Raises LengthError (too many experiments at the same time), ValueError (values out of range)

class opendaq.experiment.DAQExperiment
Bases: object

add_points(points)
Write a single point into the ring buffer.

analog_setup(pinput=1, ninput=0, gain=1, nsamples=20)
Configure a channel for a generic stream experiment.

get_mode()
Return mode.

get_params()
Return gain, pinput and ninput.

get_preload_data()
Return preload_data and preload_offset.

load_signal(data, offset=0)

read()
Return all available points from the ring buffer.

trigger_setup(mode=<Trigger.SW: 0>, value=0)
Channge the trigger mode of datachannel.

Parameters

• mode – Trigger mode (use Trigger).

22 Chapter 2. API documentation

openDAQ Documentation, Release 0.3.3

• value – Value of the trigger mode.

Raises ValueError

class opendaq.experiment.DAQExternal(mode, clock_input, edge=1, npoints=10, continu-
ous=False, buffersize=1000)

Bases: opendaq.experiment.DAQExperiment

External experiment.

Parameters

• mode – Define data source or destination (use ExpMode).

• clock_input – Digital input used as external clock

• edge – New data on rising (1) or falling (0) edges [0:1]

• npoints – Total number of points for the experiment [0:65536]

• continuous – Indicates if the experiment is continuous (False: run once, True: continu-
ous).

• buffersize – Buffer size

Raises LengthError (too many experiments at the same time, ValueError (values out of range)

class opendaq.experiment.DAQStream(mode, number, period, npoints=10, continuous=False,
buffersize=1000)

Bases: opendaq.experiment.DAQExperiment

Stream experiment.

Parameters

• mode – Define data source or destination (use ExpMode).

• period – Period of the stream experiment (milliseconds) [1:65536]

• npoints – Total number of points for the experiment [0:65536] (0 indicates continuous
acquisition).

• continuous – Indicates if experiment is continuous (True) or one-shot (False).

• buffersize – Buffer size.

Raises LengthError (too many experiments at the same time), ValueError (values out of range)

class opendaq.experiment.ExpMode
Bases: enum.IntEnum

Valid experiment modes.

ANALOG_IN = 0

ANALOG_OUT = 1

CAPTURE_IN = 5

COUNTER_IN = 4

DIGITAL_IN = 2

DIGITAL_OUT = 3

class opendaq.experiment.Trigger
Bases: enum.IntEnum

Valid trigger modes.

2.1. opendaq.daq module 23

openDAQ Documentation, Release 0.3.3

ABIG = 10

ASML = 20

DIN1 = 1

DIN2 = 2

DIN3 = 3

DIN4 = 4

DIN5 = 5

DIN6 = 6

SW = 0

24 Chapter 2. API documentation

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

25

openDAQ Documentation, Release 0.3.3

26 Chapter 3. Indices and tables

Python Module Index

o
opendaq.daq, 15
opendaq.experiment, 22

27

openDAQ Documentation, Release 0.3.3

28 Python Module Index

Index

A
ABIG (opendaq.experiment.Trigger attribute), 23
add_points() (opendaq.experiment.DAQExperiment

method), 22
AIN (opendaq.daq.CMD attribute), 15
AIN_ALL (opendaq.daq.CMD attribute), 15
AIN_CFG (opendaq.daq.CMD attribute), 15
ANALOG_IN (opendaq.experiment.ExpMode attribute),

23
ANALOG_OUT (opendaq.experiment.ExpMode at-

tribute), 23
analog_setup() (opendaq.experiment.DAQExperiment

method), 22
ASML (opendaq.experiment.Trigger attribute), 24

B
BURST_CREATE (opendaq.daq.CMD attribute), 15

C
CAPTURE_IN (opendaq.experiment.ExpMode at-

tribute), 23
CAPTURE_INIT (opendaq.daq.CMD attribute), 15
CAPTURE_STOP (opendaq.daq.CMD attribute), 15
CHANNEL_CFG (opendaq.daq.CMD attribute), 15
CHANNEL_DESTROY (opendaq.daq.CMD attribute),

15
CHANNEL_FLUSH (opendaq.daq.CMD attribute), 15
CHANNEL_SETUP (opendaq.daq.CMD attribute), 15
clear_experiments() (opendaq.daq.DAQ method), 16
close() (opendaq.daq.DAQ method), 16
CMD (class in opendaq.daq), 15
conf_adc() (opendaq.daq.DAQ method), 16
COUNTER_IN (opendaq.experiment.ExpMode at-

tribute), 23
COUNTER_INIT (opendaq.daq.CMD attribute), 15
create_burst() (opendaq.daq.DAQ method), 17
create_external() (opendaq.daq.DAQ method), 17
create_stream() (opendaq.daq.DAQ method), 17

D
DAQ (class in opendaq.daq), 16
DAQBurst (class in opendaq.experiment), 22
DAQExperiment (class in opendaq.experiment), 22
DAQExternal (class in opendaq.experiment), 23
DAQStream (class in opendaq.experiment), 23
DIGITAL_IN (opendaq.experiment.ExpMode attribute),

23
DIGITAL_OUT (opendaq.experiment.ExpMode at-

tribute), 23
DIN1 (opendaq.experiment.Trigger attribute), 24
DIN2 (opendaq.experiment.Trigger attribute), 24
DIN3 (opendaq.experiment.Trigger attribute), 24
DIN4 (opendaq.experiment.Trigger attribute), 24
DIN5 (opendaq.experiment.Trigger attribute), 24
DIN6 (opendaq.experiment.Trigger attribute), 24

E
EEPROM_READ (opendaq.daq.CMD attribute), 15
EEPROM_WRITE (opendaq.daq.CMD attribute), 15
ENABLE_CRC (opendaq.daq.CMD attribute), 15
enable_crc() (opendaq.daq.DAQ method), 17
ENCODER_INIT (opendaq.daq.CMD attribute), 15
ENCODER_STOP (opendaq.daq.CMD attribute), 15
ExpMode (class in opendaq.experiment), 23
EXTERNAL_CREATE (opendaq.daq.CMD attribute), 15

F
flush() (opendaq.daq.DAQ method), 17
flush_channel() (opendaq.daq.DAQ method), 17

G
get_adc_calib() (opendaq.daq.DAQ method), 17
GET_CALIB (opendaq.daq.CMD attribute), 15
GET_CAPTURE (opendaq.daq.CMD attribute), 16
get_capture() (opendaq.daq.DAQ method), 17
GET_COUNTER (opendaq.daq.CMD attribute), 16
get_counter() (opendaq.daq.DAQ method), 17
get_dac_calib() (opendaq.daq.DAQ method), 18

29

openDAQ Documentation, Release 0.3.3

GET_ENCODER (opendaq.daq.CMD attribute), 16
get_encoder() (opendaq.daq.DAQ method), 18
get_info() (opendaq.daq.DAQ method), 18
get_mode() (opendaq.experiment.DAQExperiment

method), 22
get_params() (opendaq.experiment.DAQExperiment

method), 22
get_preload_data() (open-

daq.experiment.DAQExperiment method),
22

get_state_ch() (opendaq.daq.DAQ method), 18
GET_STATE_CHANNEL (opendaq.daq.CMD attribute),

16
GET_TRIGGER_MODE (opendaq.daq.CMD attribute),

16
GREEN (opendaq.daq.LedColor attribute), 22

I
ID_CONFIG (opendaq.daq.CMD attribute), 16
init_capture() (opendaq.daq.DAQ method), 18
init_counter() (opendaq.daq.DAQ method), 18
init_encoder() (opendaq.daq.DAQ method), 18
init_pwm() (opendaq.daq.DAQ method), 18
is_measuring (opendaq.daq.DAQ attribute), 18

L
LED_W (opendaq.daq.CMD attribute), 16
LedColor (class in opendaq.daq), 21
load_signal() (opendaq.experiment.DAQExperiment

method), 22

O
OFF (opendaq.daq.LedColor attribute), 22
open() (opendaq.daq.DAQ method), 18
opendaq.daq (module), 15
opendaq.experiment (module), 22
ORANGE (opendaq.daq.LedColor attribute), 22

P
PIO (opendaq.daq.CMD attribute), 16
PIO_DIR (opendaq.daq.CMD attribute), 16
PORT (opendaq.daq.CMD attribute), 16
PORT_DIR (opendaq.daq.CMD attribute), 16
PWM_DUTY (opendaq.daq.CMD attribute), 16
PWM_INIT (opendaq.daq.CMD attribute), 16
PWM_STOP (opendaq.daq.CMD attribute), 16

R
read() (opendaq.experiment.DAQExperiment method),

22
read_adc() (opendaq.daq.DAQ method), 18
read_all() (opendaq.daq.DAQ method), 18
read_analog() (opendaq.daq.DAQ method), 19

read_eeprom() (opendaq.daq.DAQ method), 19
read_pio() (opendaq.daq.DAQ method), 19
read_port() (opendaq.daq.DAQ method), 19
RED (opendaq.daq.LedColor attribute), 22
remove_experiment() (opendaq.daq.DAQ method), 19
RESET (opendaq.daq.CMD attribute), 16
RESET_CALIB (opendaq.daq.CMD attribute), 16

S
send_command() (opendaq.daq.DAQ method), 19
serial_str (opendaq.daq.DAQ attribute), 19
set_adc_calib() (opendaq.daq.DAQ method), 19
SET_ANALOG (opendaq.daq.CMD attribute), 16
set_analog() (opendaq.daq.DAQ method), 19
SET_CALIB (opendaq.daq.CMD attribute), 16
SET_DAC (opendaq.daq.CMD attribute), 16
set_dac() (opendaq.daq.DAQ method), 20
set_dac_calib() (opendaq.daq.DAQ method), 20
set_id() (opendaq.daq.DAQ method), 20
set_led() (opendaq.daq.DAQ method), 20
set_pio() (opendaq.daq.DAQ method), 20
set_pio_dir() (opendaq.daq.DAQ method), 20
set_port() (opendaq.daq.DAQ method), 20
set_port_dir() (opendaq.daq.DAQ method), 20
SIGNAL_LOAD (opendaq.daq.CMD attribute), 16
spi_config() (opendaq.daq.DAQ method), 20
spi_setup() (opendaq.daq.DAQ method), 21
spi_write() (opendaq.daq.DAQ method), 21
SPISW_CONFIG (opendaq.daq.CMD attribute), 16
SPISW_SETUP (opendaq.daq.CMD attribute), 16
SPISW_TRANSFER (opendaq.daq.CMD attribute), 16
start() (opendaq.daq.DAQ method), 21
stop() (opendaq.daq.DAQ method), 21
stop_capture() (opendaq.daq.DAQ method), 21
stop_encoder() (opendaq.daq.DAQ method), 21
stop_pwm() (opendaq.daq.DAQ method), 21
STREAM_CREATE (opendaq.daq.CMD attribute), 16
STREAM_DATA (opendaq.daq.CMD attribute), 16
STREAM_START (opendaq.daq.CMD attribute), 16
STREAM_STOP (opendaq.daq.CMD attribute), 16
SW (opendaq.experiment.Trigger attribute), 24

T
Trigger (class in opendaq.experiment), 23
trigger_mode() (opendaq.daq.DAQ method), 21
TRIGGER_SETUP (opendaq.daq.CMD attribute), 16
trigger_setup() (opendaq.experiment.DAQExperiment

method), 22

W
WAIT_MS (opendaq.daq.CMD attribute), 16
write_eeprom() (opendaq.daq.DAQ method), 21

30 Index

	openDAQ usage in Python
	Device connection and port handling
	ADC reading (Command-Response mode)
	DAC setting (CR mode)
	Stream Experiments Creation (Stream Mode)
	Capture Input
	Counter Input
	Encoder Input
	PWM Output
	PIO Configuration and control (CR mode)
	Bit-bang SPI Output
	Other functions
	Calibration

	API documentation
	opendaq.daq module

	Indices and tables
	Python Module Index

