

openDAQ

This is the documentation of the openDAQ Python package

Contents:

	openDAQ usage in Python
	Device connection and port handling

	ADC reading (Command-Response mode)

	DAC setting (CR mode)

	Stream Experiments Creation (Stream Mode)

	Capture Input

	Counter Input

	Encoder Input

	PWM Output

	PIO Configuration and control (CR mode)

	Bit-bang SPI Output

	Other functions

	Calibration

	API documentation
	opendaq.daq module

Indices and tables

	Index

	Module Index

	Search Page

openDAQ usage in Python

Device connection and port handling

To establish a connection with the openDAQ through the command line type the following:

python

from opendaq import DAQ

daq = DAQ("/dev/ttyUSB0")

When creating an object of type DAQ, you have to specify the actual port at wich the openDAQ is connected. This can be done, in UNIX operating systems, typing in the terminal:

$ dmesg

You should see something like this:

...
...
...
for cp210x
[17755.465949] cp210x 1-4.4:1.0: cp210x converter detected
[17755.536101] usb 1-4.4: reset full-speed USB device number 5 using ehci-pci
[17755.629330] usb 1-4.4: cp210x converter now attached to ttyUSB0

In this example, openDAQ is attached to the USB port named ttyUSB0.

If you are working in Windows, the name of the port will be something like COMxx
instead of /dev/ttyUSBxx. You can check the port in Control
Panel->System->Device Manager.

Now, with the object daq created, we can start working with it. If you want to
close the port, simply type the following:

daq.close()

ADC reading (Command-Response mode)

First of all, we must configure the ADC,specifying the positive analog input, and the negative analog input if we want to do differential measures.

This can be done using the conf_adc function:

a.conf_adc(pinput,ninput,gain,nsamples)

The values of these parameters are listed in the following table:

	Parameter
	Description
	Value
	Notes

	pinput
	Positive input
	1:8
	AN1-AN8

	ninput
	Negative input
	M:0,5,6,7,8,25

S: 0, 1:8

N: 0, 1:8

	0: ref ground

25: ref 2,5 V

rest: input pins

	gain
	Analog gain
	M: 0:4

S: 0:7

N: 0:7

	x1/3,x1,x2,x10,x100

x1,x2,x4,x5,x8,x10,x16, x20

x1,x2,x4,x5,x8,x10,x16, x32

	nsamples
	Number of samples per
data point
	[0-254]
	

There are three options to read the ADC.

If we want the raw data from the ADC, we can use

data = daq.read_adc()

print data

Much better, if we want the data directly in Volts, just use:

data_Volts = daq.read_analog()

Finally, we can also read all the analog inputs simultaneously using the function read_all:

data_Volts = daq.read_all()

This function return a list with the readings (in Volts) of all analog inputs.

DAC setting (CR mode)

As in the case of reading the ADC, there are two functions to set the output of
the DAC: set_analog(‘V’) and set_dac(‘raw’). The first set DAC output
voltage in V betwen the voltage hardware limits :

daq.set_analog(1.5)

The function set_dac set the DAC with the raw binary data value:

daq.set_dac(3200)

	Model
	Output Voltage Range

	openDAQ[M]
	[-4.096V 4.096V]

	openDAQ[S]
	[0V 4.096V]

	openDAQ[N]
	[-4.096V 4.096V]

Stream Experiments Creation (Stream Mode)

OpenDAQ has two main modes of operation: Command-Response Mode and Stream (hardware-timed) Mode.

In command-response mode all communications are initiated by a command from the host PC, wich is followed by a response from openDAQ.

On the other hand, the Stream mode is a continous hardware-timed input mode where a list of channels that are scanned at a specified rate.

Stream Mode can be used in three kind of experiment modes, wich differ in the maximum scan rate allowed and the source of the timing clock (internal or external). We define an experiment as a certain data source with specific configuration, sampling rate and start and stop conditions:

	Stream experiments

	External experiments

	Burst experiments

Once the experiment is configured we can start it:

daq.start()

or stop it:

daq.stop()

We can read the data using the method read:

stream_exp.read()

Stream experiments

For Stream Experiments, a specific data source is sampled in regular intervals, using internal timer to keep time count (Timer2). Fastest scan rate in this mode is 1kSPS (1ms of period).

User can configure up to 4 Stream experiments to be running simultaneously. They will have each an
internal buffer of about 400 samples, which will be normally enough not to lose any point in the
communications.

First of all we have to import the library and the constant definitions:

from opendaq import *
from opendaq.daq import *

To create an Stream Experiment use the following function:

daq.stream_exp = daq.create_stream(ExpMode.ANALOG_IN, 100, 30, continuous=False)

with parameters:

	Parameter
	Description
	Value
	Notes

	ExpMode
	Define data source
or destination
	0:5
	0:ANALOG_IN

1:ANALOG_OUT

2:DIGITAL_IN

3:DIGITAL_OUT

4:COUNTER_IN

5:CAPTURE_IN

	period
	Period of the stream
experiment
	1:65536
	

	npoints
	Total number of
points for the
experiment
	0:65536
	0 indicates continous adquisition (By default 10)

	continuous
	Indicates if
experiment is
continuous
	True or False
	False:run once (By default False)

Once created the experiment we can configure the input to read. For example, if we want to read the analog input 6 (AN6), without gain, we should use:

stream_exp = daq.create_stream(ExpMode.ANALOG_IN, 200, continuous=True)

Now, we have to configure the channel. To do this we use the method analog_setup of the class DAQStream:

stream_exp.analog_setup(pinput=8, ninput=0, gain=Gains.M.x1)

with parameters:

For the example above:

stream_exp.analog_setup(pinput=7,gain=GAIN_S_X2)

External experiments

External experiments use an external digital trigger source to perform readings. Fastest scan rates are in similar ranges as for the Stream experiments. The rest of properties and parameters are similar to Stream experiments.

User can define up to 4 external experiments at the same time, each of one connected to digital inputs D1 to D4 (the number of the internal DataChannel is connected to the digital input number) to act as trigger inputs.

Maximum number of experiments will be 4 in total, including all External and Stream experiments.

To create an External Experiment use the following function:

daq.create_external(mode,clock_input,edge,npoints,continuous,buffersize)

The new parameters here are clock_input and edge, which are explained in the following table:

	Parameter
	Description
	Value
	Notes

	clock_input
	Assign a DataChannel
number and a digital
input for this
experiment
	1:4
	

	edge
	New data on rising (1)
or falling (0) edges
	0:1
	

For example, we are going to create an external experiment with an analog readin in AN8 (SE):

extern_exp = daq.create_external(ExpMode.ANALOG_IN, 1, edge=1, npoints=10, continuous=False)

As with the stream experiment, now we have to setup the analog input:

stream_exp.analog_setup(pinput=8, ninput=0, gain=Gains.M.x1)

daq.start()

We can use a while loop in this way:

while daq.is_measuring:
 print "data", extern_exp.read()

Burst experiments

Burst experiments are also internally timed, like Stream experiments, but they are intended to use a faster sampling rate, up to 10kSPS.
The high acquisition rate limits the amount of things that the processor is capable of doing at the same time.
Thus, when a Burst experiment is carried out, no more experiments can run at the same time.

Burst experiment use a bigger internal buffer of about 1600 points to temporary store results. However, if the experiment goes on for a long time, the buffer will eventually get full and the firmware will enter “Auto-recovery” mode. This means that it will get no more points until buffer gets empty again, having
an time where no sample will be taken.

To create a burst experiment use the following function:

burst_exp = daq.create_burst(mode, period, npoints, continuous)

Here is an example of a how a burst experiment is configured to do a analog output streaming:

preload_buffer = [0.3, 1, 3.3, 2]
burst_source = daq.create_burst(ExpMode.ANALOG_IN, period=200, npoints=len(preload_buffer), continous=False)
burst_source.analog_setup()
burst_source.load_signal(preload_buffer)

daq.start()

Analog output streaming

With Stream and Burst experiments we can load a generic waveform (of any type) and the device will reproduce it through the DAC. This can be achieved by this way:

	First create the waveform:

preload_buffer = [0.3, 1, 3.3, 2] # The waveform

	Next, create the experiment (Stream or Burst, see next subsections)

	Finally load the signal to the experiment:

exp_name.load_signal(preload_buffer)

IMPORTANT NOTE: Analog output streams always use internal DataChannel #4, thus digital input D4 will not be available for an External experiment.

Triggering experiments

From version 0.2.1 of the library, openDAQ allows setting trigger modes to start executing experiments.
Trigger sources may be software triggered (default), digital input trigger (rising or falling edge) or analog value (input value above or below a specific limit).

stream1.trigger_setup(type,value)

where

	type
	Value
	Notes

	SW_TRG
	
	

	software trigger (default)

	DIN1_TRG
	0/1
	digital trigger

	DIN2_TRG
	0/1
	digital trigger

	DIN3_TRG
	0/1
	digital trigger

	DIN4_TRG
	0/1
	digital trigger

	DIN5_TRG
	0/1
	digital trigger

	DIN6_TRG
	0/1
	digital trigger

	ABIG_TRG
	any
	analog trigger

	ASML_TRG
	any
	analog trigger

Capture Input

The capture input permits measuring the time length of incoming digital signals.
It makes use of device internal timer to calculate the time elapsed between changes in state (high to low or low to high) of
an external signal. OpenDAQ has a main clock running at 16MHz, which limits the minimum periods that the device is able to
measure to several microseconds.

The input in this mode is D5 (DIO 5 pin)

There are three methods associated with this mode: init_capture, stop_capture and get_capture. To start measuring use

daq.init_capture(period)

where period is the estimated period of the wave (in microseconds), and its range is 32 bits. Now , we can get the Capture reading:

daq.get_capture(mode)

where

	Parameter
	Value
	Notes

	mode
	0:3
	0: Low cycle

1: High cycle

2: Full period

Finally, stop the capture when the experiment has finished:

daq.stop_capture(mode)

Counter Input

The counter input is also based on Timer 1, and its functionality consists on counting number of edges coming through the port (D6).
This can be useful to measure the frequency of very fast signal or to read some kind of sensors.

User can select which kind of digital edges will the peripheral detect (high or low), and he can also read and reset the counter back to 0 whenever it is necessary.

The edges are counted in a 32-bit counter.

To start counting type the following:

daq.init_counter(edge)

This method configure which edge increments the count: Low-to-High (1) or High-to-Low (0). To get the counter value:

daq.get_counter(reset)

If reset>0 , the counter is reset after perform the reading.

Encoder Input

The encoder input is based on external interrupts on pin D6. Its functionality consists on counting number of edges coming through
the digital input D6 while keeping track of the direction of the movement, by reading D5 on each interrupt.

User can select the maximum resolution of the encoder.

To work in this mode there are three methods. The first start the encoder function:

daq.init_encoder(resolution)

Resolution is the maximum number of ticks per round (32-bit counter).This command configures external interrupts on D6 and resets the pulse
counter to 0. Next, to get the current encoder relative position use:

daq.get_encoder()

This method returns the actual encoder value. Finally, stop the encoder:

daq.stop_encoder()

PWM Output

Pulse Width Modulator generates a continuous digital signal at a given frequency. Duty refers to the portion of time that the signal spends in High state.

PWM output is connected to port D6 of openDAQ.

To start the PWM Output mode use the following method:

daq.init_pwm(duty,period)

Duty is the high time of the signal ([0:1023]). If 0, the signal is always low. Period is the period of the signal in microseconds. To stop the PWM:

daq.stop_pwm()

PIO Configuration and control (CR mode)

The openDAQ has 6 DIO (digital Inputs/Outputs). We have 4 DIO lines on the right side screw terminal block (D1-D4), and the two others on the left terminal block (D5-D6).

D5 is a multipurpose terminal that is also connected with internal microprocessor’s Timer/Counter 2. Apart from being used as a DIO, this terminal can be configured as
PWM output, Counter input or Capture input.

All the digital I/O lines include an internal series resistor and a protective diode that provides overvoltage/short-circuit protection. The series resistors (about 100Ω)
also limit the ability of these lines to sink or source current.

The DIOs have 3 possible states: input, output-high, or output-low. Each line of I/O can be configured individually. When configured as an input, the line has a 50kΩ pull-up
resistor to 5.0 volts. When configured as output-high, the line is connected to the internal 5.0 volt supply (through a series resistor).

When configured as output-low, a bit is connected to GND (through a series resistor). All digital I/O are configured to be inputs at power up.

We have two couples of commands to control the digital I/O lines. The first two ones control each line individually, one to set or read the line direction (input or output),
and the other to read or set the line value (high or low). The other two commands control the six lines at a time, one function to read or set the lines direction, and the
other command to read or set the lines values.

	Method
	Arguments
	Notes

	set_pio_dir
	number: 1:6

output: 0:1

	PIO number

0: input; 1: output

	set_pio
	number: 1:6

value: 0:1

	PIO number

Digital value: 0 Low, 1 High

	read_pio
	number: 1:6
	PIO number

	set_port_dir
	output: 0:1
	0: input; 1: output

	set_port
	value: 0:1
	Digital value: 0 Low, 1 High

	read_port
	
	

Bit-bang SPI Output

The Serial Peripheral Interface (SPI) is a very popular communications bus, used widely in electronics to control slave devices. This utility allows openDAQ to communicate with other low level devices, like external port expanders, PGAs, switches or other peripherals.

SPI is a synchronous serial data link that operates in full duplex mode, using a master/slave scheme, where the master device always initiates the data frame. Multiple slave devices are allowed with separated select lines.

The SPI bus specifies four logic signals:

	SCLK: serial clock (output from master)

	MOSI: master output, slave input (output from master)

	MISO: master input, slave output (output from slave)

	SS: slave select (active low, output from master)

To begin a communication, the bus master first configures the clock, and then transmits the logic 0 for the desired chip over the chip select line (SS). During each SPI clock cycle, a full duplex data transmission
occurs:

	The master sends a bit on the MOSI line, and the slave reads it from that same line

	The slave sends a bit on the MISO line, and the master reads it from that same line

Transmissions may involve any number of clock cycles.

A relevant issue concerning SPI transmissions, is how the SCLK behaves, and when the MISO and MOSI lines should be read. By convention, these options are named CPOL (clock polarity) and CPHA (clock phase). At CPOL=0 the base value of the clock, when inactive, is zero. CPHA=0 means sample on the leading (first) clock edge, while CPHA=1 means sample on the trailing (second) clock edge, regardless of whether that clock edge is rising or falling. Taking this into consideration, we can define up to four SPI modes, by combining the two possible values of each option.

OpenDAQ uses a so called bit-bang SPI mode, as the bus signals are generated entirely by software (no specific hardware is used).

Specific commands are available to configure the functions of the pins (which DIO number will be used for each SPI line) and the SPI mode (CPOL and CPHA). The SS lines must be controlled separately, using any of the DIO terminals not configured as SPI line (PIO command must be used).

To configure Bit-bang SPI use this method:

daq.spi_config(cpol,cpha)

Here, cpol is the clock polarity (clock pin state when inactive) and chpa is the clock phase (leading 0, or trailing 1 edges read).

To select the PIO numbers to use, we have the following method:

daq.spi_setup(nbytes,sck,mosi,miso)

where

	Parameter
	Value
	Notes

	nbytes
	
	Number of bytes

	sck
	1 by default
	Clock pin

	mosi
	2 by default
	MOSI pin

	miso
	3 by default
	MISO pin

Finally, to transfer (send and receive) a byte or a word use:

daq.spi_write(value,word)

If word = True , then we are sending a 2-byte word instead of a byte.

Other functions

There are other methods that can be used with the openDAQ. They are listed below:

	Method
	Arguments
	Notes

	enable_crc
	on
	Enable/Disable the cyclic redundancy check

	set_led
	color
	0:off ; 1: green ; 2: red ; 3: orange

	set_id
	id: [000:999]
	Identify openDAQ device

	device_info
	None
	Read device configuration:

Hardware version

Firmware version

Device ID number

Calibration

IMPORTANT NOTE: The functions used for openDAQ calibration have been redesigned completely from firmware version 1.4.0 and python library version 0.3

Use the tool opendaq-utils, which is installed with the rest of the scripts, for device calibrating and updating.

Theory of operation

AIN and DAC commands are transmitted between the host PC and the device in raw binary using the full 16-bit range of the binary transmissions. For example, raw code -32768
correspond in the ADC readings of the openDAQ [M] to -4.096V, while it is equivalent to -12.0V for the openDAQ [S]. Maximum ADC raw values range up to 32767, which is equivalent
to 4.095V in openDAQ [M] and to 12.0V in openDAQ[S].

The same happens for the DAC values: in all openDAQ models maximum raw value (32767) is equivalent to a +4.096V output, and in case of openDAQ [M] minimum value is -32768 or -4.095V.
Minimum DAC value for openDAQ [S] is 0V which is equivalent to 0 raw code.

In the case of the ADC inputs the situation is more complex, as there are different gain settings that do affect the conversion between raw codes and real voltage values.

The devices always use the raw values for the internal calculations and data transmission, and it is the daq.py library who has the duty to translate those binary codes into actual
voltage values.

The relationships between the voltage values and raw codes are always linear, and a good approximation to transform the raw codes into voltages would be just to use the theorical
formulas that could be deduced from previous paragraphs. Anyhow, the voltage values calculated from the theorical formulas would have some error, because the components inside the
circuits of the openDAQ devices do not have a perfect ideal behaviour. Thus, a specific calibration is used for each openDAQ device, so that the values read by the ADCs and set in the
DAC are far more similar to the ideal values.

These values are stored in the permanent EEPROM memory of the openDAQs and used by the opendaq-python library to calculate the formulas between the raw codes and voltage values.
Those calculations are carried in a slighly different manner depending on the openDAQ model. The code of the conversions is in the model.py file.

DAC calibration

The functions that manage the DAC calibration are:

daq.set_dac_calib(*list of CalibReg registers*)
daq.get_dac_calib()

These methods set and read the device DAC calibration, where CalibReg are pairs of slope and offset coefficients ([dac_corr, dac_offset]).
The values are the coefficients of the line that corrects the deviation between the ideal values and the actual values that the device outputs when it applies no calibration.

In the case of the of the DAC output the mathematical function between the theorical value and the raw binary code is exactly the same:

[image: raw_dac_code = volts / dac_base_gain]

And applying the calibration:

[image: raw_dac_code = (volts - dac_offset) / (dac_base_gain * dac_corr)]

ADC calibration

The functions that manage the DAC calibration are:

daq.get_adc_calib(*list of CalibReg registers*)
daq.get_adc_calib()

Where as in the case of the DAC calibration, CalibReg are pairs of slope and offset coefficients ([adc_corr, adc_offset]).

	adc_corr is the slope of the calibration lines, the read value divided by the real voltage value at the input.

	adc_offset is the zero crossing of the line, in this case the raw ADC value for a 0V input (in this case, it is not a voltage but a raw binary code).

In the case of the ADC, several facts have to be taken into consideration:

	Each analog input will have a different calibration line

	In the case of openDAQ [M] each gain setting must be calibrated separately, as the gains are set by resistor values with a relatively high tolerance. This is not the case of the

openDAQ [S] and [N], which use a PGA with factory calibration for all ranges.
- The inputs of the openDAQ [S] have a different calibration if they are used as single ended (SE) or differential (DE). In the case of openDAQ [M] the calibration can be the same for
both modes, because the inputs are just multiplexed.

All of this translates into the following:

	openDAQ [M] has a total of 13 ADC calibration slots, 8 for each analog input, and 5 for each gain setting.

	openDAQ [S] has 16 ADC calibration slots, 8 for each analog input in SE mode, and 8 for each input in DE mode.

	openDAQ [N] has 16 ADC calibration slots, 8 for each analog input in SE mode, and 8 for each input in DE mode.

The mathematical function between the raw code given by the device and the real analog value is given by an equation depending on the device model (check file model.py):

[image: volts = raw / (adc_base_gain * gain_ampli)]

Where adc_base_gain is the relationship between binary codes and volts at gain 1x, and gain_ampli the actual gain amplification being used.

Applying calibration to the equation above:

[image: volts = (raw - adc_offset1 - (adc_offset2*gain_ampli)) / (adc_corr1 * adc_corr2 * adc_base_gain * gain_ampli)]

API documentation

opendaq.daq module

Main functions used to communicate with the device.
See usage.rst for additional info.

	
class opendaq.daq.CMD

	Bases: enum.IntEnum

	
AIN = 1

	

	
AIN_ALL = 4

	

	
AIN_CFG = 2

	

	
BURST_CREATE = 21

	

	
CAPTURE_INIT = 14

	

	
CAPTURE_STOP = 15

	

	
CHANNEL_CFG = 22

	

	
CHANNEL_DESTROY = 57

	

	
CHANNEL_FLUSH = 45

	

	
CHANNEL_SETUP = 32

	

	
COUNTER_INIT = 41

	

	
EEPROM_READ = 31

	

	
EEPROM_WRITE = 30

	

	
ENABLE_CRC = 55

	

	
ENCODER_INIT = 50

	

	
ENCODER_STOP = 51

	

	
EXTERNAL_CREATE = 20

	

	
GET_CALIB = 36

	

	
GET_CAPTURE = 16

	

	
GET_COUNTER = 42

	

	
GET_ENCODER = 52

	

	
GET_STATE_CHANNEL = 35

	

	
GET_TRIGGER_MODE = 34

	

	
ID_CONFIG = 39

	

	
LED_W = 18

	

	
PIO = 3

	

	
PIO_DIR = 5

	

	
PORT = 7

	

	
PORT_DIR = 9

	

	
PWM_DUTY = 12

	

	
PWM_INIT = 10

	

	
PWM_STOP = 11

	

	
RESET = 27

	

	
RESET_CALIB = 38

	

	
SET_ANALOG = 24

	

	
SET_CALIB = 37

	

	
SET_DAC = 13

	

	
SIGNAL_LOAD = 23

	

	
SPISW_CONFIG = 26

	

	
SPISW_SETUP = 28

	

	
SPISW_TRANSFER = 29

	

	
STREAM_CREATE = 19

	

	
STREAM_DATA = 25

	

	
STREAM_START = 64

	

	
STREAM_STOP = 80

	

	
TRIGGER_SETUP = 33

	

	
WAIT_MS = 17

	

	
class opendaq.daq.DAQ(port, debug=False)

	Bases: object

This class represents an OpenDAQ device.

	
clear_experiments()

	Delete the whole experiment list.

	
close()

	Close the serial port.

	
conf_adc(pinput=8, ninput=0, gain=0, nsamples=20)

	Configure the analog-to-digital converter.

Get the parameters for configure the analog-to-digital converter.

	Parameters:	
	pinput – Positive input [1:8].

	ninput – Negative input.

	gain – Analog gain.

	nsamples – Number of samples per data point [0-255).

	Raises:	ValueError

	
create_burst(*args, **kwargs)

	Create Burst experiment.

See the DAQBurst class constructor for more info.

	
create_external(mode, clock_input, *args, **kwargs)

	Create External experiment.

See the DAQExternal class constructor for more info.

	
create_stream(mode, *args, **kwargs)

	Create Stream experiment.

See the DAQStream class constructor for more info.

	
enable_crc(on)

	Enable/Disable the cyclic redundancy check.

	Parameters:	on – Enable/disable CRC checking (bool).

	
flush()

	Flush internal buffers.

	
flush_channel(number)

	Flush the channel.

	Parameters:	number – Number of DataChannel to flush.

	Returns:	ValueError

	
get_adc_calib()

	Get the ADC calibration.

	Returns:	List of ADC calibration registers

	
get_capture(mode)

	Get Capture reading for the period length.

	Parameters:	mode – Period length (0: Low cycle, 1: High cycle,
2: Full period)

	Returns:	
	mode

	period: The period length in microseconds

	Raises:	ValueError

	
get_counter(reset)

	Get the counter value.

	Parameters:	reset – reset the counter after perform reading (boolean).

	
get_dac_calib()

	Get the DAC calibration.

	Returns:	List of DAC calibration registers

	
get_encoder()

	Get current encoder relative position.

	Returns:	Position: The actual encoder value.

	
get_info()

	Read device information.

	Returns:	[hardware_version, firmware_version, device_id]

	
get_state_ch(number)

	Get state of the DataChannel.

	Parameters:	number – Number of the DataChannel.

	Raises:	ValueError

	
init_capture(period)

	Start Capture Mode around a given period.

	Parameters:	period – Estimated period of the wave (in microseconds).

	Raises:	ValueError

	
init_counter(edge)

	Initialize the edge counter and configure which edge increments the
count.

	Parameters:	edge – high-to-low (False) or low-to-high (True).

	
init_encoder(resolution)

	Start Encoder function.

	Parameters:	resolution – Maximum number of ticks per round [0:65535].

	Raises:	ValueError

	
init_pwm(duty, period)

	Start PWM output with a given period and duty cycle.

	Parameters:	
	duty – High time of the signal [0:1023](0 always low, 1023 always
high).

	period – Period of the signal (microseconds) [0:65535].

	Raises:	ValueError

	
is_measuring

	True if any experiment is going on.

	
open()

	Open the serial port.

	
read_adc()

	Read data from ADC and return the raw value.

	Returns:	Raw ADC value.

	
read_all(nsamples=20, gain=0)

	Read data from all analog inputs

	Parameters:	
	nsamples – Number of samples per data point [0-255] (default=20)

	gain – Analog gain (default=1)

	Returns:	Values[0:7]: List of the analog reading on each input

	
read_analog()

	Read data from ADC in volts.

	Returns:	Voltage value.

	
read_eeprom(pos)

	Read a byte from the EEPROM.

	Parameters:	
	val – value to write.

	pos – position in memory.

	Raises:	ValueError

	
read_pio(number)

	Read PIO input value (0: low, 1: high).

	Parameters:	number – PIO number.

	Returns:	Read value.

	Raises:	ValueError

	
read_port()

	Read all PIO values.

	Returns:	Binary value of the port.

	
remove_experiment(experiment)

	Delete a single experiment.

	Parameters:	experiment – reference of the experiment to remove.

	Raises:	ValueError

	
send_command(command, ret_fmt=None)

	Build a command packet, send it to the openDAQ and process the
response.

	Parameters:	
	command – Command string.

	ret_fmt – Payload format of the response using python ‘struct’
format characters. I ret_fmt is None, no response is expected.

	Returns:	Command ID and arguments of the response.

	Raises:	LengthError: The legth of the response is not the expected.

	
serial_str

	

	
set_adc_calib(regs)

	Set the ADC calibration.

	Parameters:	regs – A list of CalibReg objects.

	Raises:	ValueError, IndexError

	
set_analog(volts, number=1)

	Set DAC output (volts).
Set the output voltage of the DAC.

	Parameters:	volts – DAC output value in volts.

	Raises:	ValueError

	
set_dac(raw, number=1)

	Set DAC output (raw value).
Set the raw value of the DAC.

“param raw: Raw ADC value.
:raises: ValueError

	
set_dac_calib(regs)

	Set the DAC calibration.

	Parameters:	regs – A list of CalibReg objects.

	Raises:	ValueError, IndexError

	
set_id(id)

	Identify openDAQ device.

	Parameters:	id – id number of the device [000:999]

	Raises:	ValueError

	
set_led(color, number=1)

	Choose LED status.
LED switch on (green, red or orange) or switch off.

	Parameters:	color – LED color (use LedColor).

	Raises:	ValueError

	
set_pio(number, value)

	Write PIO output value.
Set the value of the PIO terminal (0: low, 1: high).

	Parameters:	
	number – PIO number.

	value – digital value (0: low, 1: high)

	Raises:	ValueError

	
set_pio_dir(number, output)

	Configure PIO direction.
Set the direction of a specific PIO terminal (D1-D6).

	Parameters:	
	number – PIO number.

	output – PIO direction (0 input, 1 output).

	Raises:	ValueError

	
set_port(value)

	Write all PIO values.
Set the value of all Dx terminals.

	Parameters:	value – Port output byte (bits: 0:low, 1:high).

	Raises:	ValueError

	
set_port_dir(output)

	Configure all PIOs directions.
Set the direction of all D1-D6 terminals.

	Parameters:	output – Port directions byte (bits: 0:input, 1:output).

	Raises:	ValueError

	
spi_config(cpol, cpha)

	Bit-Bang SPI configure (clock properties).

	Parameters:	
	cpol – Clock polarity (clock pin state when inactive).

	cpha – Clock phase (leading 0, or trailing 1 edges read).

	Raises:	ValueError

	
spi_setup(nbytes, sck=1, mosi=2, miso=3)

	Bit-Bang SPI setup (PIO numbers to use).

	Parameters:	
	nbytes – Number of bytes.

	sck – Clock pin.

	mosi – MOSI pin (master out / slave in).

	miso – MISO pin (master in / slave out).

	Raises:	ValueError

	
spi_write(value, word=False)

	Bit-bang SPI transfer (send+receive) a byte or a word.

	Parameters:	
	value – Data to send (byte/word to transmit).

	word – send a 2-byte word, instead of a byte.

	Raises:	ValueError

	
start()

	Start all available experiments.

	
stop(clear=False)

	Stop all running experiments and exit threads.

	Parameters:	clear – If True, the experiment list will be cleared. The

experiments will no longer be available.

	
stop_capture()

	Stop Capture mode.

	
stop_encoder()

	Stop encoder

	
stop_pwm()

	Stop PWM

	
trigger_mode(number)

	Get the trigger mode of the DataChannel.

	Parameters:	number – Number of the DataChannel.

	Raises:	ValueError

	
write_eeprom(pos, val)

	Write a byte in the EEPROM.

	Parameters:	id – id number of the device [000:999].

	Raises:	ValueError

	
class opendaq.daq.LedColor

	Bases: enum.IntEnum

Valid LED colors.

	
GREEN = 1

	

	
OFF = 0

	

	
ORANGE = 3

	

	
RED = 2

	

Experiment classes

	
class opendaq.experiment.DAQBurst(mode, period, npoints=10, continuous=False, buffersize=4000)

	Bases: opendaq.experiment.DAQExperiment

Burst experiment.

	Parameters:	
	mode – Define data source or destination (use ExpMode).

	period – Period of the stream experiment (microseconds) [1:65536]

	npoints – Total number of points for the experiment [0:65536]

	continuous – Indicates if the experiment is continuous
(False: run once, True: continuous).

	buffersize – Buffer size

	Raises:	LengthError (too many experiments at the same time), ValueError
(values out of range)

	
class opendaq.experiment.DAQExperiment

	Bases: object

	
add_points(points)

	Write a single point into the ring buffer.

	
analog_setup(pinput=1, ninput=0, gain=1, nsamples=20)

	Configure a channel for a generic stream experiment.

	
get_mode()

	Return mode.

	
get_params()

	Return gain, pinput and ninput.

	
get_preload_data()

	Return preload_data and preload_offset.

	
load_signal(data, offset=0)

	

	
read()

	Return all available points from the ring buffer.

	
trigger_setup(mode=<Trigger.SW: 0>, value=0)

	Channge the trigger mode of datachannel.

	Parameters:	
	mode – Trigger mode (use Trigger).

	value – Value of the trigger mode.

	Raises:	ValueError

	
class opendaq.experiment.DAQExternal(mode, clock_input, edge=1, npoints=10, continuous=False, buffersize=1000)

	Bases: opendaq.experiment.DAQExperiment

External experiment.

	Parameters:	
	mode – Define data source or destination (use ExpMode).

	clock_input – Digital input used as external clock

	edge – New data on rising (1) or falling (0) edges [0:1]

	npoints – Total number of points for the experiment [0:65536]

	continuous – Indicates if the experiment is continuous
(False: run once, True: continuous).

	buffersize – Buffer size

	Raises:	LengthError (too many experiments at the same time,
ValueError (values out of range)

	
class opendaq.experiment.DAQStream(mode, number, period, npoints=10, continuous=False, buffersize=1000)

	Bases: opendaq.experiment.DAQExperiment

Stream experiment.

	Parameters:	
	mode – Define data source or destination (use ExpMode).

	period – Period of the stream experiment (milliseconds) [1:65536]

	npoints – Total number of points for the experiment
[0:65536] (0 indicates continuous acquisition).

	continuous – Indicates if experiment is continuous (True) or
one-shot (False).

	buffersize – Buffer size.

	Raises:	LengthError (too many experiments at the same time),
ValueError (values out of range)

	
class opendaq.experiment.ExpMode

	Bases: enum.IntEnum

Valid experiment modes.

	
ANALOG_IN = 0

	

	
ANALOG_OUT = 1

	

	
CAPTURE_IN = 5

	

	
COUNTER_IN = 4

	

	
DIGITAL_IN = 2

	

	
DIGITAL_OUT = 3

	

	
class opendaq.experiment.Trigger

	Bases: enum.IntEnum

Valid trigger modes.

	
ABIG = 10

	

	
ASML = 20

	

	
DIN1 = 1

	

	
DIN2 = 2

	

	
DIN3 = 3

	

	
DIN4 = 4

	

	
DIN5 = 5

	

	
DIN6 = 6

	

	
SW = 0

	

 Python Module Index

 o

 		 	

 		
 o	

 	[image: -]
 	
 opendaq	

 	
 	
 opendaq.daq	

 	
 	
 opendaq.experiment	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | O
 | P
 | R
 | S
 | T
 | W

A

 	
 	ABIG (opendaq.experiment.Trigger attribute)

 	add_points() (opendaq.experiment.DAQExperiment method)

 	AIN (opendaq.daq.CMD attribute)

 	AIN_ALL (opendaq.daq.CMD attribute)

 	
 	AIN_CFG (opendaq.daq.CMD attribute)

 	ANALOG_IN (opendaq.experiment.ExpMode attribute)

 	ANALOG_OUT (opendaq.experiment.ExpMode attribute)

 	analog_setup() (opendaq.experiment.DAQExperiment method)

 	ASML (opendaq.experiment.Trigger attribute)

B

 	
 	BURST_CREATE (opendaq.daq.CMD attribute)

C

 	
 	CAPTURE_IN (opendaq.experiment.ExpMode attribute)

 	CAPTURE_INIT (opendaq.daq.CMD attribute)

 	CAPTURE_STOP (opendaq.daq.CMD attribute)

 	CHANNEL_CFG (opendaq.daq.CMD attribute)

 	CHANNEL_DESTROY (opendaq.daq.CMD attribute)

 	CHANNEL_FLUSH (opendaq.daq.CMD attribute)

 	CHANNEL_SETUP (opendaq.daq.CMD attribute)

 	clear_experiments() (opendaq.daq.DAQ method)

 	
 	close() (opendaq.daq.DAQ method)

 	CMD (class in opendaq.daq)

 	conf_adc() (opendaq.daq.DAQ method)

 	COUNTER_IN (opendaq.experiment.ExpMode attribute)

 	COUNTER_INIT (opendaq.daq.CMD attribute)

 	create_burst() (opendaq.daq.DAQ method)

 	create_external() (opendaq.daq.DAQ method)

 	create_stream() (opendaq.daq.DAQ method)

D

 	
 	DAQ (class in opendaq.daq)

 	DAQBurst (class in opendaq.experiment)

 	DAQExperiment (class in opendaq.experiment)

 	DAQExternal (class in opendaq.experiment)

 	DAQStream (class in opendaq.experiment)

 	DIGITAL_IN (opendaq.experiment.ExpMode attribute)

 	
 	DIGITAL_OUT (opendaq.experiment.ExpMode attribute)

 	DIN1 (opendaq.experiment.Trigger attribute)

 	DIN2 (opendaq.experiment.Trigger attribute)

 	DIN3 (opendaq.experiment.Trigger attribute)

 	DIN4 (opendaq.experiment.Trigger attribute)

 	DIN5 (opendaq.experiment.Trigger attribute)

 	DIN6 (opendaq.experiment.Trigger attribute)

E

 	
 	EEPROM_READ (opendaq.daq.CMD attribute)

 	EEPROM_WRITE (opendaq.daq.CMD attribute)

 	ENABLE_CRC (opendaq.daq.CMD attribute)

 	enable_crc() (opendaq.daq.DAQ method)

 	
 	ENCODER_INIT (opendaq.daq.CMD attribute)

 	ENCODER_STOP (opendaq.daq.CMD attribute)

 	ExpMode (class in opendaq.experiment)

 	EXTERNAL_CREATE (opendaq.daq.CMD attribute)

F

 	
 	flush() (opendaq.daq.DAQ method)

 	
 	flush_channel() (opendaq.daq.DAQ method)

G

 	
 	get_adc_calib() (opendaq.daq.DAQ method)

 	GET_CALIB (opendaq.daq.CMD attribute)

 	GET_CAPTURE (opendaq.daq.CMD attribute)

 	get_capture() (opendaq.daq.DAQ method)

 	GET_COUNTER (opendaq.daq.CMD attribute)

 	get_counter() (opendaq.daq.DAQ method)

 	get_dac_calib() (opendaq.daq.DAQ method)

 	GET_ENCODER (opendaq.daq.CMD attribute)

 	
 	get_encoder() (opendaq.daq.DAQ method)

 	get_info() (opendaq.daq.DAQ method)

 	get_mode() (opendaq.experiment.DAQExperiment method)

 	get_params() (opendaq.experiment.DAQExperiment method)

 	get_preload_data() (opendaq.experiment.DAQExperiment method)

 	get_state_ch() (opendaq.daq.DAQ method)

 	GET_STATE_CHANNEL (opendaq.daq.CMD attribute)

 	GET_TRIGGER_MODE (opendaq.daq.CMD attribute)

 	GREEN (opendaq.daq.LedColor attribute)

I

 	
 	ID_CONFIG (opendaq.daq.CMD attribute)

 	init_capture() (opendaq.daq.DAQ method)

 	init_counter() (opendaq.daq.DAQ method)

 	
 	init_encoder() (opendaq.daq.DAQ method)

 	init_pwm() (opendaq.daq.DAQ method)

 	is_measuring (opendaq.daq.DAQ attribute)

L

 	
 	LED_W (opendaq.daq.CMD attribute)

 	
 	LedColor (class in opendaq.daq)

 	load_signal() (opendaq.experiment.DAQExperiment method)

O

 	
 	OFF (opendaq.daq.LedColor attribute)

 	open() (opendaq.daq.DAQ method)

 	
 	opendaq.daq (module)

 	opendaq.experiment (module)

 	ORANGE (opendaq.daq.LedColor attribute)

P

 	
 	PIO (opendaq.daq.CMD attribute)

 	PIO_DIR (opendaq.daq.CMD attribute)

 	PORT (opendaq.daq.CMD attribute)

 	
 	PORT_DIR (opendaq.daq.CMD attribute)

 	PWM_DUTY (opendaq.daq.CMD attribute)

 	PWM_INIT (opendaq.daq.CMD attribute)

 	PWM_STOP (opendaq.daq.CMD attribute)

R

 	
 	read() (opendaq.experiment.DAQExperiment method)

 	read_adc() (opendaq.daq.DAQ method)

 	read_all() (opendaq.daq.DAQ method)

 	read_analog() (opendaq.daq.DAQ method)

 	read_eeprom() (opendaq.daq.DAQ method)

 	
 	read_pio() (opendaq.daq.DAQ method)

 	read_port() (opendaq.daq.DAQ method)

 	RED (opendaq.daq.LedColor attribute)

 	remove_experiment() (opendaq.daq.DAQ method)

 	RESET (opendaq.daq.CMD attribute)

 	RESET_CALIB (opendaq.daq.CMD attribute)

S

 	
 	send_command() (opendaq.daq.DAQ method)

 	serial_str (opendaq.daq.DAQ attribute)

 	set_adc_calib() (opendaq.daq.DAQ method)

 	SET_ANALOG (opendaq.daq.CMD attribute)

 	set_analog() (opendaq.daq.DAQ method)

 	SET_CALIB (opendaq.daq.CMD attribute)

 	SET_DAC (opendaq.daq.CMD attribute)

 	set_dac() (opendaq.daq.DAQ method)

 	set_dac_calib() (opendaq.daq.DAQ method)

 	set_id() (opendaq.daq.DAQ method)

 	set_led() (opendaq.daq.DAQ method)

 	set_pio() (opendaq.daq.DAQ method)

 	set_pio_dir() (opendaq.daq.DAQ method)

 	set_port() (opendaq.daq.DAQ method)

 	set_port_dir() (opendaq.daq.DAQ method)

 	SIGNAL_LOAD (opendaq.daq.CMD attribute)

 	
 	spi_config() (opendaq.daq.DAQ method)

 	spi_setup() (opendaq.daq.DAQ method)

 	spi_write() (opendaq.daq.DAQ method)

 	SPISW_CONFIG (opendaq.daq.CMD attribute)

 	SPISW_SETUP (opendaq.daq.CMD attribute)

 	SPISW_TRANSFER (opendaq.daq.CMD attribute)

 	start() (opendaq.daq.DAQ method)

 	stop() (opendaq.daq.DAQ method)

 	stop_capture() (opendaq.daq.DAQ method)

 	stop_encoder() (opendaq.daq.DAQ method)

 	stop_pwm() (opendaq.daq.DAQ method)

 	STREAM_CREATE (opendaq.daq.CMD attribute)

 	STREAM_DATA (opendaq.daq.CMD attribute)

 	STREAM_START (opendaq.daq.CMD attribute)

 	STREAM_STOP (opendaq.daq.CMD attribute)

 	SW (opendaq.experiment.Trigger attribute)

T

 	
 	Trigger (class in opendaq.experiment)

 	trigger_mode() (opendaq.daq.DAQ method)

 	
 	TRIGGER_SETUP (opendaq.daq.CMD attribute)

 	trigger_setup() (opendaq.experiment.DAQExperiment method)

W

 	
 	WAIT_MS (opendaq.daq.CMD attribute)

 	
 	write_eeprom() (opendaq.daq.DAQ method)

 _static/comment-close.png

_static/up-pressed.png

_static/comment.png

_static/plus.png

_static/ajax-loader.gif

_static/minus.png

_images/math/552027dc7bda2fc9b1aad305ab29099b1c0d4e03.png
rawgaccode = (volts — dac, f f set) [(dacyase ain * daccorr,

_static/down-pressed.png

_static/up.png

_static/comment-bright.png

_static/down.png

_static/file.png

_images/math/de21934f74bcfa59360860d0598f2ea1cfdc7dcc.png
volts = (raw — adc, f fsetl — (adc, f f set2 * gaingmpli)) /(adc.orr]l * adc.orr2 * adcyase, ain * gaingmpli)

nav.xhtml

 Table of Contents

 		openDAQ

 		openDAQ usage in Python

 		Device connection and port handling

 		ADC reading (Command-Response mode)

 		DAC setting (CR mode)

 		Stream Experiments Creation (Stream Mode)

 		Stream experiments

 		External experiments

 		Burst experiments

 		Analog output streaming

 		Triggering experiments

 		Capture Input

 		Counter Input

 		Encoder Input

 		PWM Output

 		PIO Configuration and control (CR mode)

 		Bit-bang SPI Output

 		Other functions

 		Calibration

 		Theory of operation

 		DAC calibration

 		ADC calibration

 		API documentation

 		opendaq.daq module

 		Experiment classes

_images/math/9f5d0a0f5976608cb15fa05710fa2bc8601a2d5e.png
rawgacc.ode = volts/dacyase, ain

_images/math/0c7f3fe9cbc6a15e58caaff6a7b8bdf5988b862e.png
volts = raw [(adcyase,ain * gain,mpli)

